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Abstract 
We have presented the unique patterns obtained from Sparse matrices of interconnected networks. 
We showed properties derived from these patterns. We have presented the common properties 
obtained from these patterns. We have showed that matrices obtained are alpha-beta band matrices. 
The routing function is evaluated from alpha-beta band matrices. 
 

Keywords: Sparse Matrix, Multicore Architecture, Hypercube, Adjacency Matrix.

Introduction: 

In this research, we have given a method to 
obtain Sparse Matrix of some interconnected 
networks. Sparse matrices have most of its 
elements as null, so this makes study of it 
easy. Since each interconnection network has 
its own properties, these properties are visible 
in their respective matrix. We used sparse 
matrix to describe properties of 
interconnection network. We have proved 
these properties by using concepts of matrix. 
We have presented the unique patterns 
obtained from sparse matrices. These patterns 
are indifferent and are related to their network. 

 

Background: 
 

We have considered Sparse Matrix to study 
patterns of interconnection network. A sparse 
Matrix is a two-dimensional array having the 
value of majority elements as null. [12] 
Following is a sparse matrix where ‘*’ denotes 
the elements having non-null values. 
 
 

 
 

Figure 1. A Sparse Matrix 
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In large number of applications, sparse 
matrices are involved. Some well-known 
sparse matrices which are symmetric in form 
can be classified as follows: 
 

1. Lower- left Triangular Matrices- Triangular 
Matrices which has elements in its lower left 
part only are called Lower-left triangular 
matrices. 

2. Lower right Triangular Matrices- Triangular 
Matrices which has elements in its lower right 
part only are called Lower-left triangular 
matrices. 

3. Upper- left Triangular Matrices- Triangular 
Matrices which has elements in its upper left 
part only are called Lower-left triangular 
matrices. 

4. Upper- right Triangular Matrices- 
Triangular Matrices which has elements in its 
upper right part only are called Lower-left 
triangular matrices. 

5. Diagonal Matrices- Matrices which has 
elements at its diagonal only are called 
Diagonal matrices. 

6. Tridiagonal Matrices-Matrices which has 
elements at its diagonal as well as at upper and 
lower parts of diagonal as shown below in 
Figure 4.  

 

 

 

 

Figure 2. Tridiagonal Matrix 

7. αβ-Band Matrices- Matrices which has 
elements at the upper and lower part of the 
diagonal as shown below in Figure 5 are called 
αβ-Band Matrices. 
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Figure 3. αβ-Band Matrix 

When we obtained Adjacency matrices of 
network, we got most of them are of αβ-Band 
matrices type. So, the indexing formula of αβ-
Band Matrix can be used as routing function 
for those architectures which has αβ-Band 
Matrix pattern. [7] Considering the row-major 
ordering for the memory allocation, the 
indexing formula is explained as below: [12] 

Case 1: 1 ≤ 𝑖𝑖 ≤ 𝛽𝛽 

Address (aij) = Number of elements in first (i-

1)-th rows + Number of elements in i-th row 

up to j-th columns 

= 𝛼𝛼 + (𝛼𝛼 + 1) + (𝛼𝛼 + 2) + ⋯+ (𝛼𝛼 + 𝑖𝑖 − 2)

+ 𝑗𝑗 

= 𝛼𝛼 × (𝑖𝑖 − 1)

+ [1 + 2 + 3 + ⋯+ (𝑖𝑖 − 2)]

+ 𝑗𝑗

= 𝛼𝛼 × (𝑖𝑖 − 1)

+
(𝑖𝑖 − 1)(𝑖𝑖 − 2)

2
+ 𝑗𝑗 

Case 2: β<i≤n-α+1 

Address (aij) = Number of first β rows+ 
Number of elements between (β+1)-th row and 
(i-1)-th row + Number of elements in i-th 
row  

= 𝛼𝛼 + (𝛼𝛼 + 1) + (𝛼𝛼 + 2) + ⋯+ (𝛼𝛼 + 𝛽𝛽 − 1)
+ (𝛼𝛼 + 𝛽𝛽 − 1) × (𝑖𝑖 − 𝛽𝛽 − 1)
+ 𝑗𝑗 − 𝑖𝑖 + 𝛽𝛽 
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 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽(𝛽𝛽−1)
2

+ (𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 − 1)(𝑖𝑖 − 𝛽𝛽 −

1) + 𝑗𝑗 − 𝑖𝑖 + 𝛽𝛽  

Case 3: n-α+1<i 

Address (aij) = Number of elements in first (n-
α+1) rows + Number of elements after (n-
α+1)-th row and up to (i-1)-th row + Number 
of elements in i-th row 

= 𝛼𝛼𝛼𝛼 +  
𝛽𝛽(𝛽𝛽 − 1)

2
+ (𝛼𝛼 + 𝛽𝛽 − 1)(𝑛𝑛 − 𝛼𝛼 − 𝛽𝛽

+ 1) + (𝛼𝛼 + 𝛽𝛽 − 2) 

+(𝛼𝛼 + 𝛽𝛽 − 3) + ⋯

+ {𝛼𝛼 + 𝛽𝛽

− [(𝑖𝑖 − 1) − (𝑛𝑛 − 𝛼𝛼 + 1)]}

+ 𝑗𝑗 − 𝑖𝑖 + 𝛼𝛼 

= 𝛼𝛼𝛼𝛼 +
𝛽𝛽(𝛽𝛽 − 1)

2
+ (𝛼𝛼 + 𝛽𝛽 − 1)(𝑛𝑛 − 𝛼𝛼 − 𝛽𝛽 + 1)

+ (𝛼𝛼 + 𝛽𝛽)(𝑖𝑖 − 𝑛𝑛 + 𝛼𝛼 − 1)

−
(𝑖𝑖 − 𝑛𝑛 + 𝛼𝛼 − 1) + (𝑖𝑖 − 𝑛𝑛 + 𝛼𝛼 − 2)

2
+ 1 

Matrix Representation of Some 

Interconnection Network: 

1. Mesh 

 

Figure 4. Graphical Representation of Mesh 
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Figure 5. Incidence Matrix of Mesh 

 

   Figure 6. Butterfly Pattern of Mesh 

2. Pyramid 

 

Figure 7. Graphical Representation of Pyramid 

 

 

 
Figure 8. incidence Matrix of Pyramid 
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Figure 9. Butterfly Pattern of Pyramid 

3. Torus 

 

Figure 10. Graphical Representation of Torus 

 

 

 

 

 

 

Figure 11. Incidence Matrix of Torus 
 

 

Figure 12. Butterfly Pattern of Torus 

 

 

4. Hypercube 

 

Figure 13. Graphical Representation of 
Hypercube 

 

 

 

 

 

 

 

Figure 14. Incidence Matrix of Hypercube 

 

 

Figure 15. Butterfly Pattern of Hypercube 

5. Butterfly 
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Figure 16. Graphical Representation of 
Butterfly 

 

 

 

 

 

 

 

Figure 17. Incidence Matrix of Butterfly 

 

 

Figure 18. Butterfly Pattern 

 

 

6. Fat Tree 

 

Figure 19. Graphical Representation of Fat 
tree 

 

 

 

 

 

Figure 20. Incidence Matrix of Fat Tree 

 

Figure 21. Butterfly Pattern of Fat Tree 

7.  Perfect Difference Network 

 

Figure 22. Graphical Representation of PDN 
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Figure 23. Incidence Matrix of PDN 

i/j 1 2 3 4 5 6 7 
1 0 1 0 1 1 0 1 
2 1 0 1 0 1 1 0 
3 0 1 0 1 0 1 1 
4 1 0 1 0 1 0 1 
5 1 1 0 1 0 1 0 
6 0 1 1 0 1 0 1 
7 1 0 1 1 0 1 0 

 

Figure 24. Butterfly Pattern of PDN 

List of Properties obtained: 

1. The above Matrices so obtained are all 
Sparse Matrices (say A). 

2. Transpose of A is equal to itself. That is, 
A=AT 

3. In some, upper right triangular part of A is 
symmetrical to its lower left triangular part. 
Similarly, in some upper left triangular part is 
symmetrical to its right lower triangular part. 

4. On bisecting the A horizontally from the 
center, the upper part is symmetrical to lower 
part but is in opposite direction.  

5. On bisecting the A vertically from the 
center, the left part is symmetrical to right part 
but some are in opposite direction and some 
are in same direction.  

6. 1 at the intersection of a row and a column 
denotes connection, i.e., node of that row is 
connected with the node of that column. 0 at 
the intersection of a row and a column denotes 
that they do not have a connection with each 
other.  

7. Number of edges or links in the architecture 
is the total number of 1s in the matrix.  

8. Degree of a node (represented by either a 
row or column) is equal to the total number of 
1s in the row or column.  

9. The Routing Function of it can be 
formulated by alpha- beta band matrix.  

10. On observing matrices of each network, 
we see that each have a unique pattern.  

Conclusion 

When we have derived the matrix patterns of 
architectures, we observed that all matrices are 
Sparse Matrices i.e., the connections between 
processors are loose and not dense. This 
concludes that the communication is also loose 
between two nodes. The unique patterns so 
observed conclude that each interconnection 
network has its own unique property. These 
matrices may help in recognizing the 
architectures and in study of its properties. 
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